

Software like WVC, MECC, Air Learn, TDAQ, and improved motion algorithms allow a testing machine to test, mark, and sort more than 3 tires every minute.

1 Improved Capability

- > In addition to WVC and MECC software, the TTOC6 is equipped with Air Learn software that monitors the machine's air regulation performance statistics to quickly stabilize tire inflation to the desired set point.
- > Integrated with our Tire Data Acquisition (TDAQ) product to substantially increase measurement resolution and improve noise immunity.
- > Tire motion algorithms, along with WVC and TDAQ, allow a testing machine to test, mark, and sort more than 3 tires every minute, while maintaining industry-required measurement repeatability.

Adapts to Your Control Methodology

- > Variety of customizable architectural implementations
- > Choose your PLC (Allen-Bradley/Rockwell, Siemens, etc.)
- Distributed or rack I/O
- > Same full-function TTOC6 on new CX111 or machine upgrade

Simplified Maintenace

- > Fewer electronic components, fewer points of failure, better reliability
- Online help with video for tooling changes
- > Web-based message logs, servo setups, and machine configuration
- > "Instant Message" support at machine any time, all the time

Fits Your Business

- > Modular design for scalability a enables phased approach to tire testing improvements
- > Compact flash drive allows standalone operation and no data loss if plant network fails
- > Built-in and optional data acquisition and integration help you achieve shop floor and product traceability requirements

+1 330.644.3059

TTOC6 features an easy-to-use, graphics-based UI

MACHINE # 1 ID:demo							🧕 ci	hat Panel	∃ SHOW	
4:53:16 PM		Bits Forced:	0	1/12	B30[6].5				
Mar 29, 2021 Recipe							di 🖬 🖬		(\mathbf{X})	?
dueler20:0	LI 2BC_NEXT		I ALLPROB_TB		LI BLRO_LDE		11	41.		
Machine Sequence Waiting For MAJOR FAULT	LI 2BC_READ LO 2BC STEP1		D ALUMIWHEEL I ARG 2SPT		LI BLR0_001 GI BLR0 RE1					
Status	L0 2BC_STEP1		I ARG_2SPT	1000	LI BLRO RE		$\Box h$		3 1 -	*
MAJOR FAULT: TTOC	GI ABORT_TSIS	S LI	I ARG_ATSPT		PI BOTGRDS					
initialization.	LI ABRT_RTRY	L1 G1			PI BOTG_OTI		Test 🔘			
	PO AB_DRV_CW	GI		1000	LI BOTG_KE		Air 🙁	Chuck CLoad		
	PI ACCLWS_UNI		I ARG_JOG_HL	1.000	GI BOTVHSM			Spindle TSIS		+/-
Main	PO ACCOPS_LT PI ACCOPS UNI	GI			GI BOTVHSME PI BRROFWOT					
Main	LI ACHK_2SV0				PI BRRORVO		(💮 M	ain		
	LI ACHK_ATSP	LI			PI BSEPFW0					
Load	LO ACHK_CDN LO ACHK CUP				PI BSEPRVOT				SETPT	ACTUAL
	LI ACHK_HOME		_	1.000	LI BSEP_2SF		Inflation RPM		35.000 60.000	-0.357 0.000
	LO ACHK_JCDN				LI BSEP_HOM					0.000
Conveyor	LO ACHK_JCUP PO ACTV LITE				LI BSEP_SPT PI BTLTFW07		Segment Encoder Positi	on	25	0
	P0 ACTV_PINS		E BAR4_LOUT		PI BTLTRV0	ГLS	Encoder Degre			0.0
	PO AC_ENABLE	PC			LI BTLT_2H		Lower Rim End			0 0.0
Geometry	LI ADJ_CHUCK	E PC			LI BTLT_2SF		Rim 1	Diamatar		20.0
	P0 AIRJOGPLUS		D BDSPSI_SOL	1.770	LI BTLT_HOM		Kim I	Width		6.50
	P0 AIRPRG_SOL	. PI			LI BTLT_SP		Rim 2	Diameter Width		0.0 0.00
	LI AIR_PRESZ	GI			LI BTLT_SP					0.00
	LI AIR_STABLE		I BHSMTILT	1.000	LI BYTEWISE		Rim Type			
	PO ALARM_LT	GI			GI CALC_DAT					
	GI ALARM_TSIS		I BLRO_IN		LI CALIB_OF					
						м	AJOR FAULT)E	
Operation Modes	/	\sim	FORCE ON		JOG ON		it 🚺		СУ	CLE
	Go Back		<u> </u>					<u> </u>		
					100.055		JCK IS DOWN	NOT CHARACTERIZE		STOPPED
Calibration			NO FORCE	\bigcirc	JOG OFF		JENCE		RO RO	NDLE TATE
	Search				_					
Diagnostic	bouron	\sim	FORCE OFF	FORC	FORCE OFF PLC BITS		RETRACTING			
							DWHEEL			RECTION
		\mathbf{X}					INACTIVE	INACTI	/E	
More >		\vee	Sort	REM	IOVE FORCES				CA	LCULATE
						O TIRE	EVILIA (

Diagnostics

Extensive Diagnostics allow maintenance to control various PLC bits.

Customize a "favorites" screen, mixing analog and PLC I/O to display status for any machine function. The search function also makes it easy to find I/O of interest.

The data window contains current settings and actual values related to a specific area of control.

Customized Online Help

We customize our help to match our customized test equipment. It includes photos and video to explain operational procedures and troubleshooting methods.

Users can select topics for general help, while calibration help appears automatically to guide users through these specialized tasks.

For help with responding to the current machine problem, just touch the alarm message in the status window.

Machine Visualization and Remote, Real-time Support

The machine visualization screen displays status. The thumbnail version of the screen includes cycle status indicators, while the full-size version includes tracking data and fault details. This information is also instantly available for plant supervisors and engineers -- from their desktop computer!

Real-time support is only a touch away in the Chat Panel. The Chat Panel blinks to alert machine personnel to incoming messages. Once expanded, this instant messaging application allows direct communication with Poling Group engineers to solve problems -- without waiting for support to arrive on-site.

Integrated Plotting Software

Diagnose machine problems with ease. The plotting software provides engineers quick and easy access to watch any of the machine's PLC status bits, I/O points, or analog channels in real-time. Plots can be started manually or set to trigger based on machine events, such as capturing the data of a full tire sequence from chuck-up to chuck-down.

Three operation modes are available: Standard plot mode records a single revolution of tire data. Oscilloscope mode records each tire revolution on top of the previous, allowing engineers to view differences in machine behavior between each revolution. Last, chart recorder mode stores up to 5 minutes of plot data, which can either be printed directly to PDF or saved to disk as a CSV file for later review.

Maintenance Reminders

Since routine maintenance and proper machine greasing are essential in keeping a tire testing machine running at peak performance, the TTOC6 provides a centralized system for machine maintenance tracking. As maintenance checkpoints are reached, reminder indicators are visible until the maintenance process has been addressed.

Photos / schematics are displayed to aid in each part's maintenance routine. All maintenance activity is logged by date, personnel, and machine part. Having this data available allows all plant personnel and management to stay informed about the machine's maintenance status.